visualizing data

dr. mine çetinkaya-rundel duke university

"The simple graph has brought more information to the data analyst's mind than any other device."

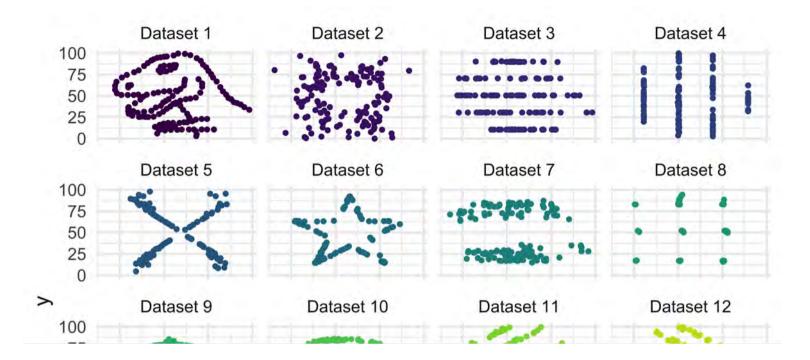
John Tukey

we visualize data to ...

 discover patterns that may not be obvious from numerical summaries We have 13 datasets, each with 142 observations. For each observation we have values on two variables recorded: an X and a Y.

Summary statistics for these two variables for each of the datasets is given on the right.

dataset	n	Average x	Average y
Dataset 1	142	54.3	47.8
Dataset 2	142	54.3	47.8
Dataset 3	142	54.3	47.8
Dataset 4	142	54.3	47.8
Dataset 5	142	54.3	47.8
Dataset 6	142	54.3	47.8
Dataset 7	142	54.3	47.8
Dataset 8	142	54.3	47.8
Dataset 9	142	54.3	47.8
Dataset 10	142	54.3	47.8
Dataset 11	142	54.3	47.8
Dataset 12	142	54.3	47.8
Dataset 13	142	54.3	47.8


Some more summary statistics...

dataset	n	Average x	Average y	St Dev x	St Dev y
Dataset 1	142	54.3	47.8	16.8	26.9
Dataset 2	142	54.3	47.8	16.8	26.9
Dataset 3	142	54.3	47.8	16.8	26.9
Dataset 4	142	54.3	47.8	16.8	26.9
Dataset 5	142	54.3	47.8	16.8	26.9
Dataset 6	142	54.3	47.8	16.8	26.9
Dataset 7	142	54.3	47.8	16.8	26.9
Dataset 8	142	54.3	47.8	16.8	26.9
Dataset 9	142	54.3	47.8	16.8	26.9
Dataset 10	142	54.3	47.8	16.8	26.9
Dataset 11	142	54.3	47.8	16.8	26.9
Dataset 12	142	54.3	47.8	16.8	26.9
Dataset 13	142	54.3	47.8	16.8	26.9

And some more summary statistics...

dataset	n	Average x	Average y	St Dev x	St Dev y	Correlation
Dataset 1	142	54.3	47.8	16.8	26.9	-0.1
Dataset 2	142	54.3	47.8	16.8	26.9	-0.1
Dataset 3	142	54.3	47.8	16.8	26.9	-0.1
Dataset 4	142	54.3	47.8	16.8	26.9	-0.1
Dataset 5	142	54.3	47.8	16.8	26.9	-0.1
Dataset 6	142	54.3	47.8	16.8	26.9	-0.1
Dataset 7	142	54.3	47.8	16.8	26.9	-0.1
Dataset 8	142	54.3	47.8	16.8	26.9	-0.1
Dataset 9	142	54.3	47.8	16.8	26.9	-0.1
Dataset 10	142	54.3	47.8	16.8	26.9	-0.1
Dataset 11	142	54.3	47.8	16.8	26.9	-0.1
Dataset 12	142	54.3	47.8	16.8	26.9	-0.1
Dataset 13	142	54.3	47.8	16.8	26.9	-0.1

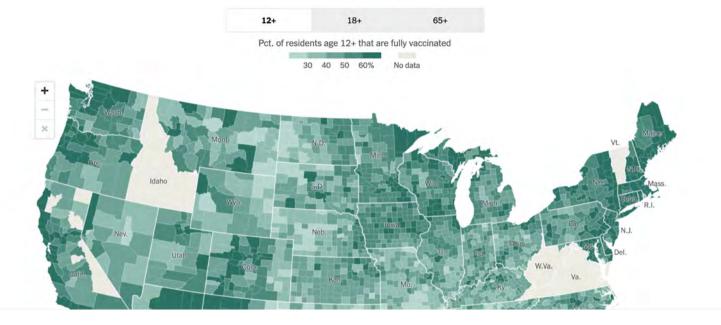
And finally a visualization!

We visualize data to ...

- discover patterns that may not be obvious from numerical summaries
- convey information in a way that is otherwise difficult/impossible to convey

Describe, in words, what this visualization shows.

Source: Financial Times, 27 Aug 2021.


Death rates have climbed far above historical averages in many countries that have faced Covid-19 outbreaks

Describe, in words, what this visualization shows.

Source: New York Times, 27 Aug 2021.

Updated Aug. 27, 2021

Describe, in words, what this visualization shows.

Source: Kieran Healy - Excess Deaths in 2020, 21 Oct 2021.

All-Cause Mortality in the United States Comparing 2020 to 2015-2019

Years () 2015-2019 🛕 2020

Blue bars show ±2 standard deviations around the 2015-2019 mean. Jurisdictions are ordered from highest to lowest percentage difference from the 2015-19 baseline

-10%		%	10% 20%	30%
New York City	0	DO		
Arizona		0 0 0		
New Jersey	00	000		*
New Mexico	0 0	000		A
Texas	00	0 00		
North Dakota		0 0		
Nevada	0 0	0 0		
Louisiana	00	0		
Mississippi		000		
South Dakota		o o		
South Carolina		0 00		
strict of Columbia	0 4	0 0		
Georgia		0 00		
Colorado		00 0		
Wyoming	00 0			
		000		
Illinois Connecticut	0	000		
		00		
Indiana Alabama	00		÷	
		000		
United States	00	-		
Maryland	0 0	0.00		
California	00	00		
Delaware		000		
Tennessee	00	0 0 0		
Florida	0 0	000		
Michigan		00		
w York (excl. NYC)	0		*	
Arkansas	0	00		
Idaho	0 0	0 00		
Missouri	0	000		
Kansas	0 00			
lowa	0	00	*	
Oklahoma	00	000		
Montana	ത്ര	00	*	
Utah	0 00	000	A.	
Wisconsin	00 0	00 0	A	
Minnesota	00	000		
Virginia	00	000		
Ohio	00	00	14	
North Carolina	00	00 0		
Rhode Island		000	*	
Kentucky	0 0	000		
Massachusetts	0 0	ത		
Nebraska		00	A	
Pennsylvania		000		
Alaska	0 00			
West Virginia	00			
Washington	0	00		
New Hampshire	00	000		
Oregon		0.0		
Puerto Rico	0 00		(A)	
Maine		0 0		
Vermont	00			
	00	00		
Hawaii	00	0 0		

Calculations and Graph: Kieran Healy. Made with R and ggplot2.

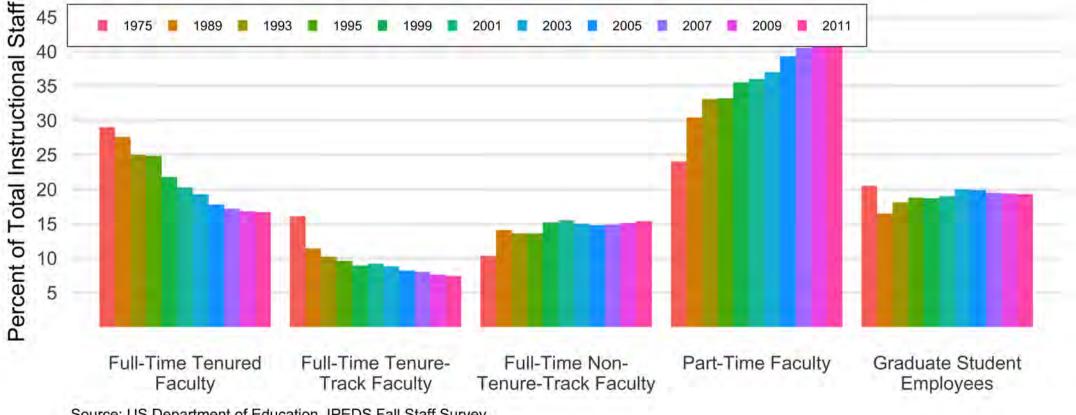
how visualize

and how not

Case study 1: Trends instructional staff employees in universities

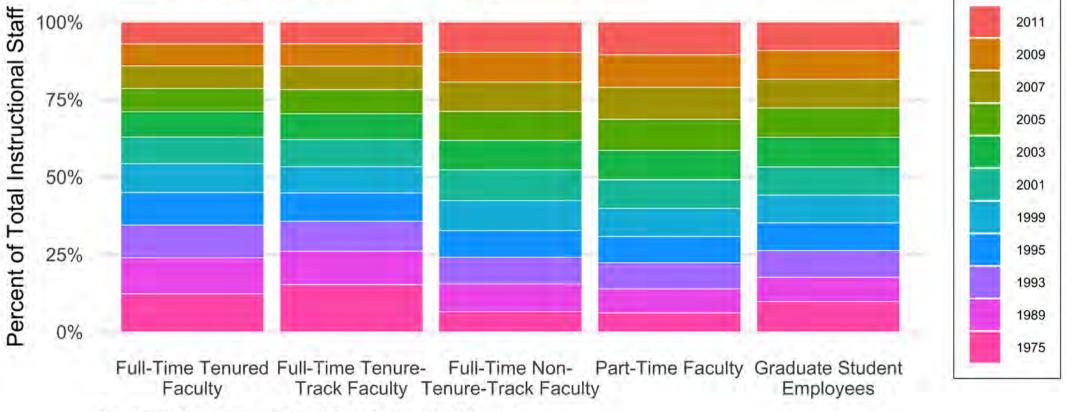
The American Association of University Professors (AAUP) is a nonprofit membership association of faculty and other academic professionals. This report by the AAUP shows trends in instructional staff employees between 1975 and 2011, and contains the following image.

What trends are apparent in the visualization on the right?

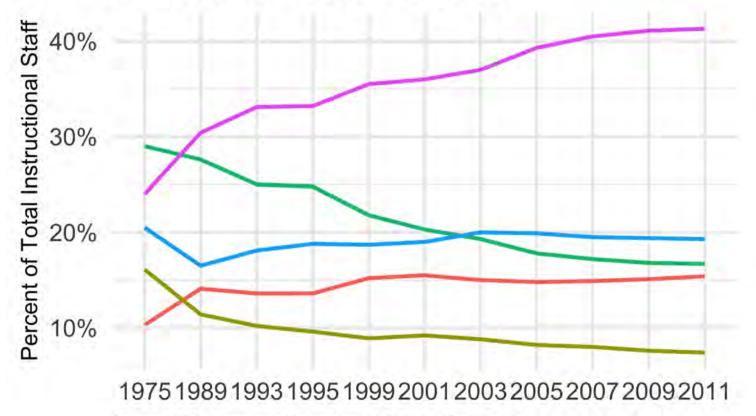


Each row in this dataset represents a faculty type, and the columns are the years for which we have data. The values are percentage of hires of that type of faculty for each year.

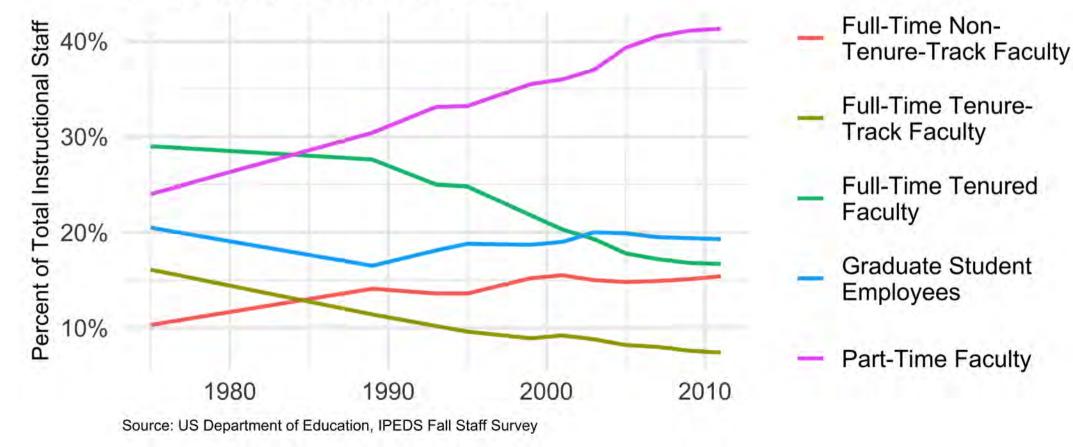
Faculty type	1975	1989	1993	1995	1999	2001	2003	2005	2007	2009	2011
Full-Time Tenured Faculty	29.0	27.6	25.0	24.8	21.8	20.3	19.3	17.8	17.2	16.8	16.7
Full-Time Tenure-Track Faculty	16.1	11.4	10.2	9.6	8.9	9.2	8.8	8.2	8.0	7.6	7.4
Full-Time Non-Tenure-Track Faculty	10.3	14.1	13.6	13.6	15.2	15.5	15.0	14.8	14.9	15.1	15.4
Part-Time Faculty	24.0	30.4	33.1	33.2	35.5	36.0	37.0	39.3	40.5	41.1	41.3
Graduate Student Employees	20.5	16.5	18.1	18.8	18.7	19.0	20.0	19.9	19.5	19.4	19.3


Recreate

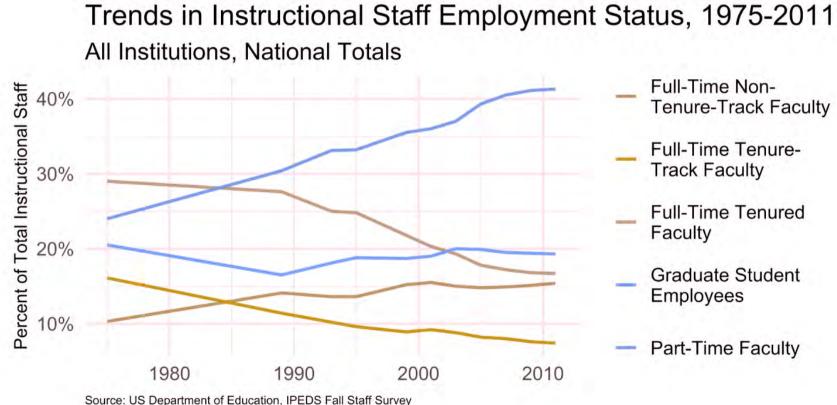
Trends in Instructional Staff Employment Status, 1975-2011 All Institutions, National Totals


Represent percentages as parts of a whole

Trends in Instructional Staff Employment Status, 1975-2011 All Institutions, National Totals


Place time on x-axis

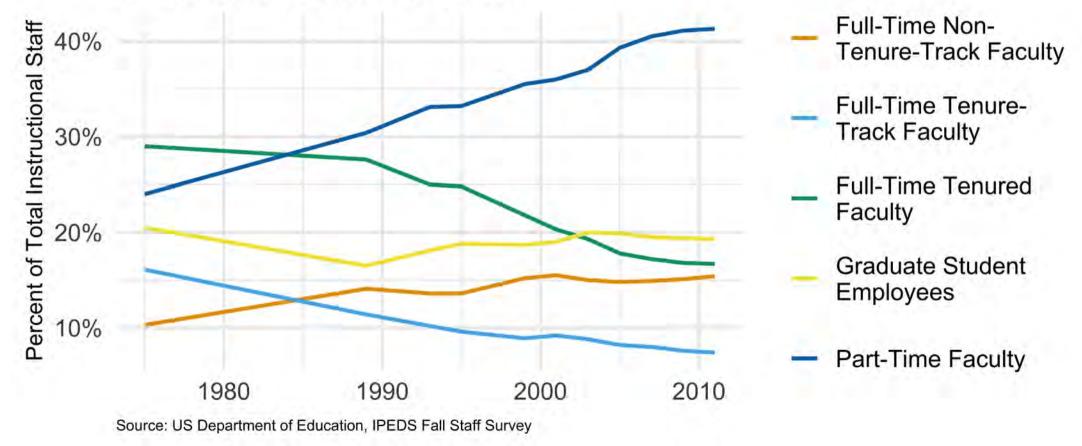
Trends in Instructional Staff Employment Status, 1975-2011 All Institutions, National Totals


- Full-Time Non-Tenure-Track Faculty Full-Time Tenure-
- Track Faculty
- Full-Time Tenured Faculty
- Graduate Student Employees
- Part-Time Faculty

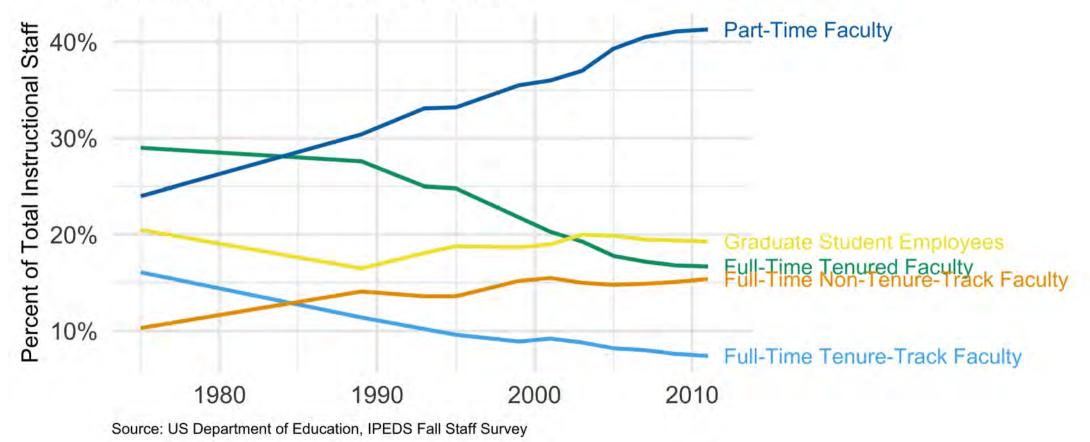
Represent time as time

Use an accessible color scale

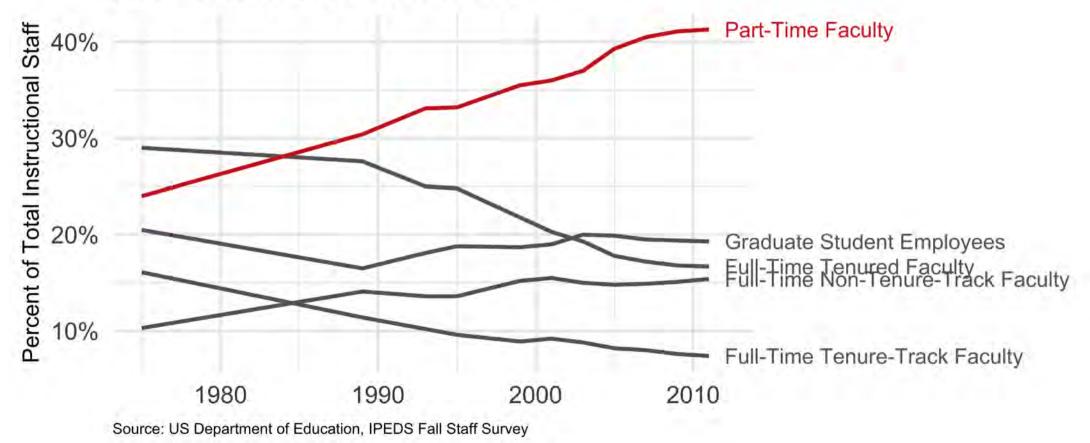
This is how the previous plot might look like to someone with Deuteranopia (a type of red-green) confusion)


Tenure-Track Faculty

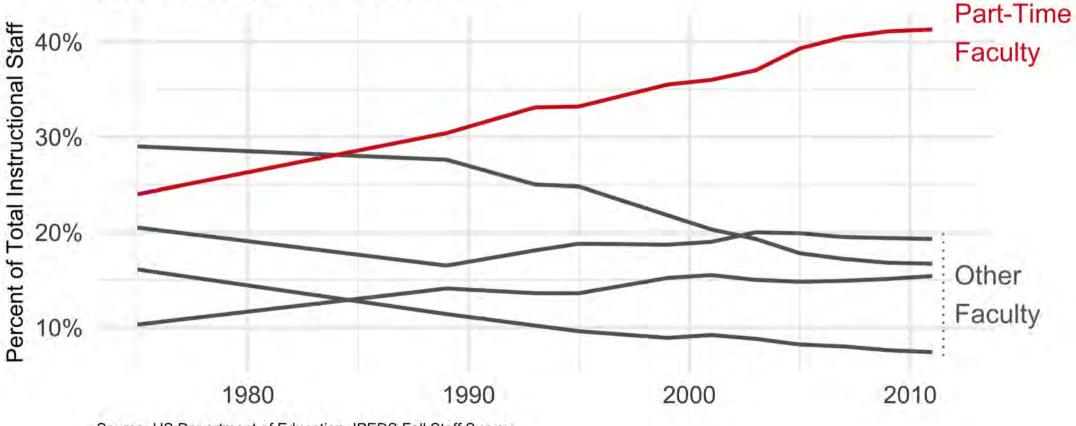
Use an accessible color scale


This is it might look like to someone with Protanopia (also a type of red-green confusion)

Trends in Instructional Staff Employment Status, 1975-2011 All Institutions, National Totals Full-Time Non-Percent of Total Instructional Staff 40% Tenure-Track Faculty Full-Time Tenure-Track Faculty 30% **Full-Time Tenured** Faculty 20% Graduate Student Employees 0% Part-Time Faculty 1980 1990 2000 2010

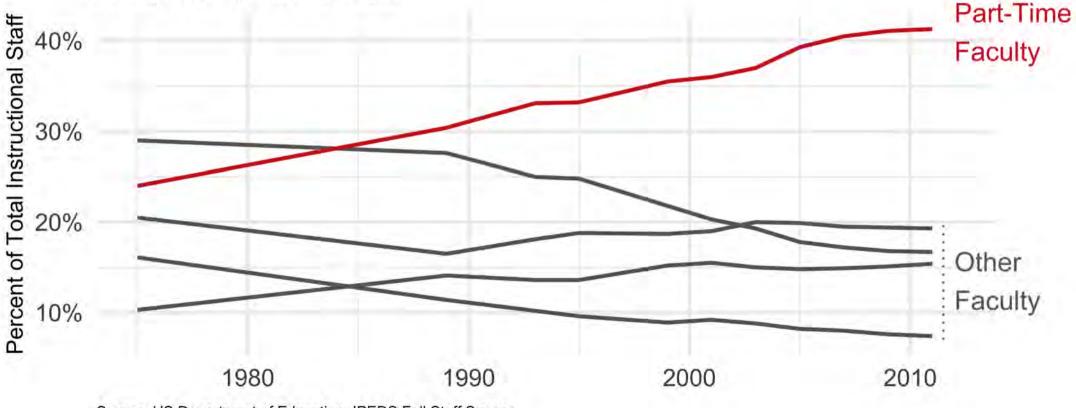

Use an accessible color scale

Use direct labeling



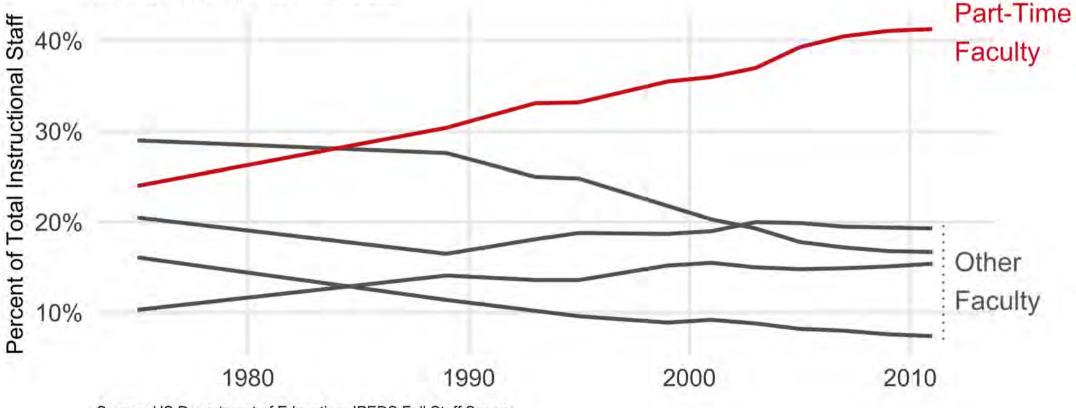
Use color to draw attention

Pick a purpose


Trends in Instructional Staff Employment Status, 1975-2011 All Institutions, National Totals

Use labels to communicate the message

Instruction by part-time faculty on a steady increase


Trends in Instructional Staff Employment Status, 1975-2011 All Institutions, National Totals

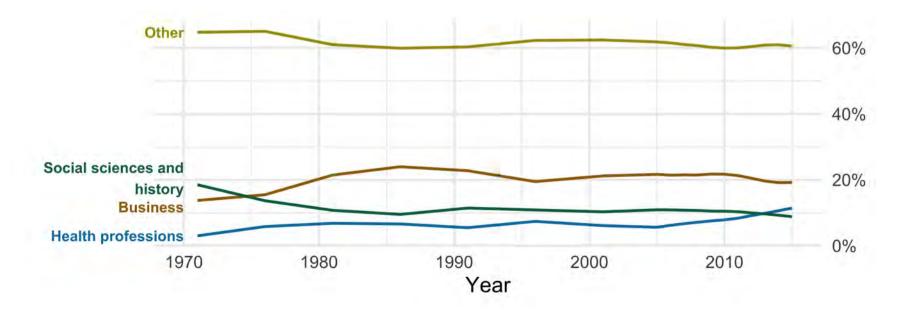
Simplify

Instruction by part-time faculty on a steady increase

Trends in Instructional Staff Employment Status, 1975-2011 All Institutions, National Totals

Summary

- Represent percentages as parts of a whole
- Place variables representing time on the x-axis when possible
- Pay attention to data types, e.g., represent time as time on a continuous scale, not years as levels of a categorical variable
- Prefer direct labeling over legends
- Use accessible colors
- Use color to draw attention
- Pick a purpose and label, color, annotate for that purpose
- Communicate your main message directly in the plot labels
- Simplify before you call it done (a.k.a. "Before you leave the house, look in the mirror and take one thing off")


Case study 2: Bachelor's degrees

Data

Each row in this dataset represents a field / year combination. For each combination we know the number and the percentage of graduates. Only the most popular three fields are identified, the remaining fields are lumped into "Other".

year	field	perc
1971	Business	0.1374204
1971	Health professions	0.0300370
1971	Social sciences and history	0.1849690
1971	Other	0.6475736
1976	Business	0.1546547
1976	Health professions	0.0582071
1976	Social sciences and history	0.1365342
1976	Other	0.6506039
1981	Business	0.2144289

	Popular Bachelor's degrees over the years																	
Field	1971	1976	1981	1986	1991	1996	2001	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Business	14%	15%	21%	24%	23%	19%	21%	22%	21%	21%	21%	22%	22%	21%	20%	20%	19%	19%
Health professions	3%	6%	7%	7%	5%	7%	6%	6%	6%	7%	7%	8%	8%	8%	9%	10%	11%	11%
Social sciences and history	18%	14%	11%	9%	11%	11%	10%	11%	11%	11%	11%	11%	10%	10%	10%	10%	9%	9%
Other	65%	65%	61%	60%	60%	62%	62%	62%	62%	61%	61%	60%	60%	60%	60%	61%	61%	61%

Tables vs. plots

Tables:

- To look up or compare individual values
- To display precise values
- To include detail and summary values
- To display quantitative values including more than one unit of measure

Plots:

- To reveal relationships among whole sets of values
- To display a message that is contained in the shape of the values (e.g., patterns, trends, exceptions)

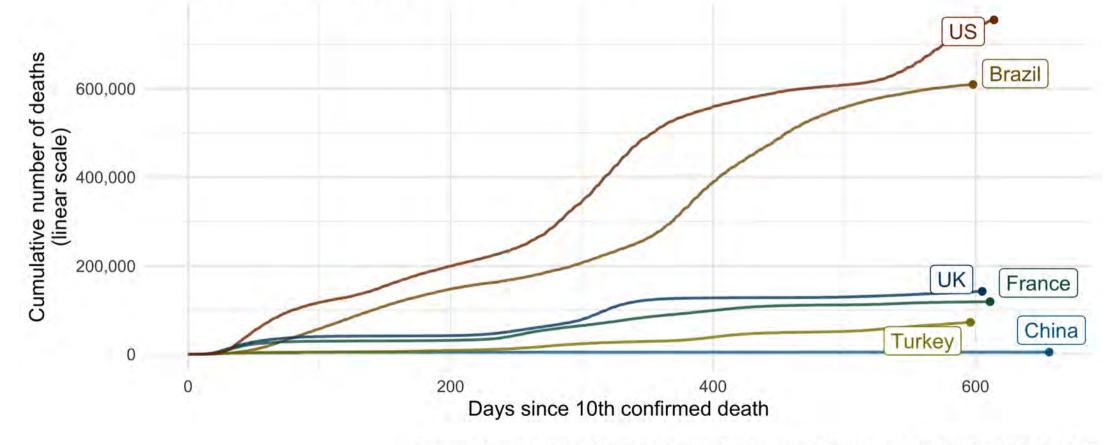
Add visualizations to your table

	Popular Bachelor's degrees over the years																		
Field	Trend	1971	1976	1981	1986	1991	1996	2001	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Business	\sim	14%	15%	21%	24%	23%	19%	21%	22%	21%	21%	21%	22%	22%	21%	20%	20%	19%	19%
Health professions	~~	3%	6%	7%	7%	5%	7%	6%	6%	6%	7%	7%	8%	8%	8%	9%	10%	11%	11%
Social sciences and history	<u></u>	18%	14%	11%	9%	11%	11%	10%	11%	11%	11%	11%	11%	10%	10%	10%	10%	9%	9%
Other	\sim	65%	65%	61%	60%	60%	62%	62%	62%	62%	61%	61%	60%	60%	60%	60%	61%	61%	61%

Summary

- A table may be preferable to a visualization
- A table can be enhanced with a visualization

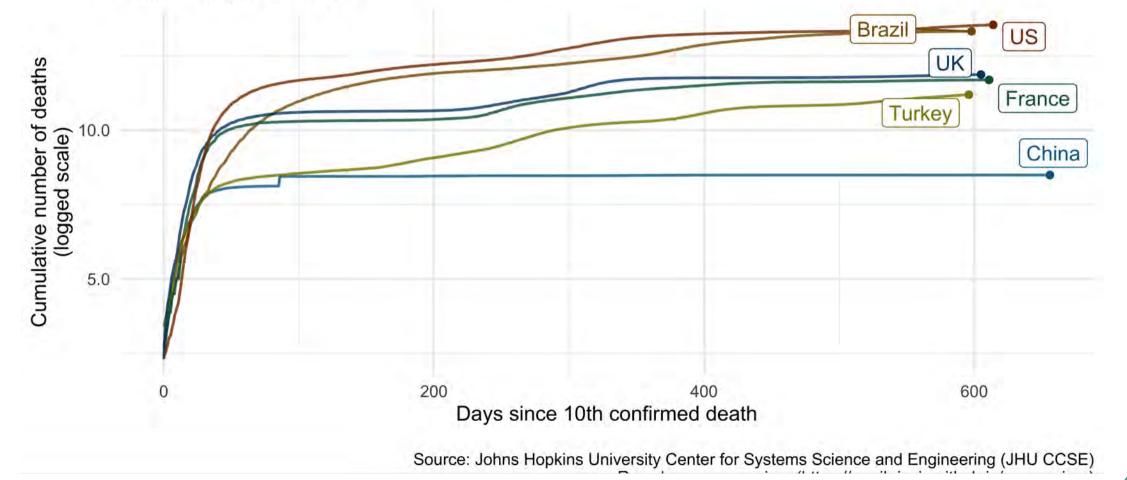
Case study 3: COVID-19 Deaths


Data

Each row represents a country date combination. For each combination we have the total number of cases, the cumulative cases, and the days elapsed since 10th confirmed COVID-19 case in that country.

country	date	tot_cases	cumulative_cases	days_elapsed
China	2020-01-22	17	17	0
China	2020-01-23	1	18	1
China	2020-01-24	8	26	2
China	2020-01-25	16	42	3
China	2020-01-26	14	56	4
China	2020-01-27	26	82	5
China	2020-01-28	49	131	6
China	2020-01-29	2	133	7
China	2020-01-30	38	171	8

Plot 1: Linear scale


Cumulative deaths from COVID-19, linear scale Data as of Mon, Nov 8, 2021

Source: Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) R package: coronavirus (https://ramikrispin.github.io/coronavirus)

Plot 2: Logged scale

Cumulative deaths from COVID-19, logged scale Data as of Mon, Nov 8, 2021

Which plot do you prefer, and why?

Zoom in to the first 25 days: Which plot do you prefer, and why?

Summary

- Your data scale matters!
- Keep in mind not just best practices, but also your audience and the amount of supplementary information you can provide

visualizion resources

Resources

• Books:

- Data Visualization: A practical introduction by Kieran Healy
- Fundamentals of Data Visualization by Claus O. Wilke
- How charts lie by Alberto Cairo
- Presenting Data Effectively by Stephanie Evergreen
- Datavision by David McCandless
- Community: Data Visualization Society
- Tools: All visualizations presented have been created with R and ggplot2
 - For those who are interested, the source code can be found here