visualizing data

© bit.ly/dataviz-ncpma
dr. mine çetinkaya-rundel duke university

Why visualize

"The simple graph has brought more information to the data analyst's mind than any other device."

John Tukey

We visualize data to ...

- discover patterns that may not be obvious from numerical summaries

We have 13 datasets, each with 142 observations. For each observation we have values on two variables recorded: an X and a Y.	dataset	Average x Average y		
	Dataset 1	142	54.3	47.8
	Dataset 2	142	54.3	47.8
	Dataset 3	142	54.3	47.8
	Dataset 4	142	54.3	47.8
Summary statistics for these two variables for each of the datasets is given on the right.	Dataset 5	142	54.3	47.8
	Dataset 6	142	54.3	47.8
	Dataset 7	142	54.3	47.8
	Dataset 8	142	54.3	47.8
How, if at all, are these 13 datasets different from each other?	Dataset 9	142	54.3	47.8
	Dataset 10	142	54.3	47.8
	Dataset 11	142	54.3	47.8
	Dataset 12	142	54.3	47.8
	Dataset 13	142	54.3	47.8

Some more summary statistics... How, if at all, are these 13 datasets different from each other?	dataset	n	Average x	Average y	St Dev x	St Dev y
	Dataset 1	142	54.3	47.8	16.8	26.9
	Dataset 2	142	54.3	47.8	16.8	26.9
	Dataset 3	142	54.3	47.8	16.8	26.9
	Dataset 4	142	54.3	47.8	16.8	26.9
	Dataset 5	142	54.3	47.8	16.8	26.9
	Dataset 6	142	54.3	47.8	16.8	26.9
	Dataset 7	142	54.3	47.8	16.8	26.9
	Dataset 8	142	54.3	47.8	16.8	26.9
	Dataset 9	142	54.3	47.8	16.8	26.9
	Dataset 10	142	54.3	47.8	16.8	26.9
	Dataset 11	142	54.3	47.8	16.8	26.9
	Dataset 12	142	54.3	47.8	16.8	26.9
	Dataset 13	142	54.3	47.8	16.8	26.9

And some more summary statistics... How, if at all, are these 13 datasets different from each other?	dataset	n	ge x	age y	St Dev x	St Dev y	Correlation
	Dataset 1	142	54.3	47.8	16.8	26.9	-0.1
	Dataset 2	142	54.3	47.8	16.8	26.9	-8.1
	Dataset 3	142	54.3	47.8	16.8	26.9	-8.1
	Dataset 4	142	54.3	47.8	16.8	26.9	-8.1
	Dataset 5	142	54.3	47.8	16.8	26.9	-8.1
	Dataset 6	142	54.3	47.8	16.8	26.9	-8.1
	Dataset 7	142	54.3	47.8	16.8	26.9	-8.1
	Dataset 8	142	54.3	47.8	16.8	26.9	-8.1
	Dataset 9	142	54.3	47.8	16.8	26.9	-0.1
	Dataset 10	142	54.3	47.8	16.8	26.9	-8.1
	Dataset 11	142	54.3	47.8	16.8	26.9	-8.1
	Dataset 12	142	54.3	47.8	16.8	26.9	-0.1
	Dataset 13	142	54.3	47.8	16.8	26.9	-0.1

And finally a visualization!

How, if at all, are these 13 datasets different from each other?

Dataset 1

Dataset 5
100
75
50
25
0 $>$

100

Dataset 2

Dataset 6

Dataset 10

Dataset 3
Dataset 4

Dataset 7

Dataset 11
Dataset 12

We visualize data to ...

- discover patterns that may not be obvious from numerical summaries
- convey information in a way that is otherwise difficult/impossible to convey

Describe, in words, what this visualization shows.

Source: Financial Times, 27 Aug 2821.

Describe, in words, what this visualization shows.

Source: New York Times, 27 Aug 2021.

Updated Aug. 27, 2021
$12+\quad 18+\quad 65+$
Pct. of residents age $12+$ that are fully vaccinated $\begin{array}{llll}30 & 40 & 50 & 60 \%\end{array}$ No data

Describe, in words, what this visualization shows.

Source: Kieran Healy - Excess Deaths in 2020, 21 Oct 2821.

All-Cause Mortality in the United States Comparing 2020 to 2015-2019
Years O2015-2019 $\boldsymbol{\Delta} 2020$
Blue bars show ± 2 standard deviations around the $2015-2019$ mean. Jurisdicitions are
ordered from highest to
lowest percentage difference from the $2015-19$
baseline

how visualize

 and how notCase study 1:
Trends instructional staff employees in universities

The American Association of University Professors (AAUP) is a nonprofit membership association of faculty and other academic professionals. This report by the AAUP shows trends in instructional staff employees between 1975 and 2011, and contains the following image.

What trends are apparent in the visualization on the right?

Data

Each row in this dataset represents a faculty type, and the columns are the years for which we have data. The values are percentage of hires of that type of faculty for each year.

Faculty type	1975	1989	1993	1995	1999	2001	2003	2005	2007	2009

Recreate

Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

[^0]
Represent percentages as parts of a whole

Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

2011
2009
2007
2005
2003
2001
1999
1995
1993
1989
1975

Source: US Department of Education, IPEDS Fall Staff Survey

Place time on x -axis

Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

19751989199319951999200120032005200720092011
Source: US Department of Education, IPEDS Fall Staff Survey

- Full-Time Non-

Tenure-Track Faculty
_ Full-Time TenureTrack Faculty
_ Full-Time Tenured
Faculty

- Graduate Student Employees
- Part-Time Faculty

Represent time as time

Trends in Instructional Staff Employment Status, 1975-2011

All Institutions, National Totals

Full-Time Non-
Tenure-Track Faculty
_ Full-Time Tenure-
Track Faculty
_ Full-Time Tenured
Faculty

- Graduate Student Employees
- Part-Time Faculty

Use an accessible color scale

This is how the previous plot might look like to someone with Deuteranopia (a type of red-green confusion)

Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

- Full-Time Non-

Tenure-Track Faculty

- Full-Time Tenure-

Track Faculty
_ Full-Time Tenured
Faculty

- Graduate Student

Employees

- Part-Time Faculty

Source: US Department of Education, IPEDS Fall Staff Survey

Use an accessible color scale

This is it might look like to someone with Protanopia (also a type of red-green confusion)
Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

Use an accessible color scale

Trends in Instructional Staff Employment Status, 1975-2011

All Institutions, National Totals

Full-Time Non-
Tenure-Track Faculty
_ Full-Time Tenure-
Track Faculty
_ Full-Time Tenured
Faculty
Graduate Student Employees

- Part-Time Faculty

Use direct labeling

Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

Source: US Department of Education, IPEDS Fall Staff Survey

Use color to draw attention

Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

Source: US Department of Education, IPEDS Fall Staff Survey

Pick a purpose

Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

Use labels to communicate the message

Instruction by part-time faculty on a steady increase

Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

Simplify

Instruction by part-time faculty on a steady increase

Trends in Instructional Staff Employment Status, 1975-2011
All Institutions, National Totals

Summary

- Represent percentages as parts of a whole
- Place variables representing time on the x-axis when possible
- Pay attention to data types, e.g., represent time as time on a continuous scale, not years as levels of a categorical variable
- Prefer direct labeling over legends
- Use accessible colors
- Use color to draw attention
- Pick a purpose and label, color, annotate for that purpose
- Communicate your main message directly in the plot labels
- Simplify before you call it done (a.k.a. "Before you leave the house, look in the mirror and take one thing off")

Case study 2:
Bachelor's degrees

Data

Each row in this dataset represents a field / year combination. For each combination we know the number and the percentage of graduates. Only the most popular three fields are identified, the remaining fields are lumped into "Other".

year field	perc
1971 Business	0.1374204
1971 Health professions	0.0308370
1971 Social sciences and history	0.1849690
1971 Other	0.6475736
1976 Business	0.1546547
1976 Health professions	0.8582071
1976 Social sciences and history	0.1365342
1976 Other	0.6506039
1981 Business	0.2144289

Should these data be displayed in a table or a plot?

Popular Bachelor's degrees over the years

Field	1971	1976	1981	1986	1991	1996	2081	2805	2086	2087	2088	2809	2010	2011	2812	2813	2814	2015
Business	14\%	15\%	21\%	24\%	23\%	19\%	21\%	22\%	21\%	21\%	21\%	22\%	22\%	21\%	20\%	20\%	19\%	19\%
Health professions	3\%	6\%	7\%	7\%	5\%	7\%	6\%	6\%	6\%	7\%	7\%	8\%	8\%	8\%	9\%	10\%	11\%	11\%
Social sciences and history	18\%	14\%	11\%	9\%	11\%	11\%	10\%	11\%	11\%	11\%	11\%	11\%	10\%	10\%	10\%	10\%	9\%	9\%
Other	65\%	65\%	61\%	68\%	68\%	62\%	62\%	62\%	62\%	61\%	61\%	60\%	68\%	68\%	60\%	61\%	61\%	61\%

Tables vs. plots

Tables:

- To look up or compare individual values
- To display precise values
- To include detail and summary values
- To display quantitative values including more than one unit of measure

Plots:

- To reveal relationships among whole sets of values
- To display a message that is contained in the shape of the values (e.g., patterns, trends, exceptions)

Add visualizations to your table

Popular Bachelor's degrees over the years																			
Field	Trend	1971	1976	1981	1986	1991	1996	2001	2005	2006	2007	2088	2089	2010	2011	2812	2013	2014	2815
Business	\sim	14\%	15\%	21\%	24\%	23\%	19\%	21\%	22\%	21\%	21\%	21\%	22\%	22\%	21\%	20\%	28\%	19\%	19\%
Health professions		3\%	6\%	7\%	7\%	5\%	7\%	6\%	6\%	6\%	7\%	7\%	8\%	8\%	8\%	9\%	18\%	11\%	11\%
Social sciences and history		18\%	14\%	11\%	9\%	11\%	11\%	10\%	11\%	11\%	11\%	11\%	11\%	10\%	18\%	10\%	18\%	9\%	9\%
Other	\checkmark	65\%	65\%	61\%	60\%	60\%	62\%	62\%	62\%	62\%	61\%	61\%	60\%	60\%	60\%	60\%	61\%	61\%	1\%

Summary

- A table may be preferable to a visualization
- A table can be enhanced with a visualization

Case study 3:
COVID-19 Deaths

Data

Each row represents a country date combination. For each combination we have the total number of cases, the cumulative cases, and the days elapsed since 10th confirmed COVID-19 case in that country.

country	date	tot_cases	cumulative_cases	days_elapsed
China	2020-81-22	17	17	θ
China	2020-81-23	1	18	1
China	2020-81-24	8	26	2
China	2020-81-25	16	42	3
China	2020-81-26	14	56	4
China	2020-81-27	26	82	5
China	2020-81-28	49	131	6
China	2020-81-29	2	133	7
China	2020-81-30	38	171	8

Plot 1: Linear scale

Cumulative deaths from COVID-19, linear scale
Data as of Mon, Nov 8, 2021

Source: Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) R package: coronavirus (https://ramikrispin.github.io/coronavirus)

Plot 2: Logged scale

Cumulative deaths from COVID-19, logged scale
Data as of Mon, Nov 8, 2021

Source: Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE)

Which plot do you prefer, and why?

Zoom in to the first 25 days: Which plot do you prefer, and why?

Summary

- Your data scale matters!
- Keep in mind not just best practices, but also your audience and the amount of supplementary information you can provide
visualizion resources

Resources

- Books:
- Data Visualization: A practical introduction by Kieran Healy
- Fundamentals of Data Visualization by Claus O. Wilke
- How charts lie by Alberto Cairo
- Presenting Data Effectively by Stephanie Evergreen
- Datavision by David McCandless
- Community: Data Visualization Society
- Tools: All visualizations presented have been created with R and ggplot2
- For those who are interested, the source code can be found here

[^0]: Source: US Department of Education, IPEDS Fall Staff Survey

